A YOLO-Based Insect Detection: Potential Use of Small Multirotor Unmanned Aerial Vehicles (UAVs) Monitoring Artigo de Conferência Capítulo de livro uri icon

resumo

  • This paper presents an approach to address the challenges of manual inspection using multirotor Unmanned Aerial Vehicles (UAV) to detect olive tree flies (Bactrocera oleae). The study employs computer vision techniques based on the You Only Look Once (YOLO) algorithm to detect insects trapped in yellow chromotropic traps. Therefore, this research evaluates the performance of the YOLOv7 algorithmin detecting and quantify olive tree flies using images obtained from two different digital cameras in a controlled environment at different distances and angles. The findings could potentially contribute to the automation of insect pest inspection by UAV-based robotic systems and highlight potential avenues for future advances in this field. In view of the experiments conducted indoors, it was found that the Arducam IMX477 camera acquires images with greater clarity compared to the TelloCam, making it possible to correctly highlight the set of Bactrocera oleae in different prediction models. The presented results in this research demonstrate that with the introduction of data augmentation and auto label techniques on the set of images of Bactrocera oleae, it was possible to arrive at a prediction model whose average detection was 256 Bactrocera oleae in relation to the corresponding ground truth value to 270 Bactrocera oleae.

data de publicação

  • 2024